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Calculation of anomalous dimensions in conformally 
invariant field theory 

E S Fradkint, M Ya PalchikS and V N Zaikin 
t Lebedev Physics Institute, Moscow, USSR 
# Institute of Automation and Electrometsy, Novosibirsk, USSR 

Received 2 January 1980 

Abstract. Within the method developed by us for calculation of the skeleton diagrams in 
conformally invariant field theory we find anomalous dimensions of fields and the coupling 
constznts in some models of quantum field theory. We also demonstrate the efficiency of the 
method for. finding ciitical indices in the theory of second-order phase transitions directly in 
three-dimensional space. 

1. Introduction 

In this paper we review our results on the determination of anomalous dimensions and 
of couplir,g constants in conformal field theory and quantum statistics. Here we dwell 
only upon the results of the present authors concerning the realisation of the bootstrap 
programmet. The basis for the stiidy of conformal field theories is provided by the set 
of completely renormalised equations for the Green functions first obtained by Fradkin 
(1954, 1955a). It appeared that this set of equations admits conformally invariant 
solutions (Polyakov 1969, Migdal1969) which are justified within the conformal theory 
since the bare terms contaiii the renormalisation factors which disappear in the present 
case. This fact was taken as a basis for the bootstrap programme formulated by a 
number of authors (Migdal 1971, Parisi and Peliti 1971, Mack and Symanzik 1972, 
Mack and Todorov 3 973) which aimed to find coupling constants and anomalous field 
dimensions. The point is that the set of renormalised equations when represented as an 
expansion with respect to skeleton diagrams (Migdal 1969) may be reduced to a set of 
equations solely for two-point Green functions and (in the case of trilinear coupling) 
three-point vertices. On the other hand, these functions are known (Polyakov 1970) to 
be determined, up to a normalising factor, by the requirement that the theory be 
conformally invariant. It is this circumstance which allows one to reduce (if one 
succeeds in calculating the integrals of skeleton diagrams) the set of integral equations 
for the two- adthree-point  Green functions to the set of algebraic equations for finding 
coupling constants and anomalous dimensions (Migdal 1971, Parisi and Peliti 1971). 
However, the complications involved in performing the calculations of the integrals 
which appear in the process of reduction has hindered progress in this direction. 

t More details on the present status of conformal field theory may be found in the review article by Fradkin 
and Palchik (1978). 
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In the papers by Fradkin et a1 (1977), Palchik (1977) and Zaikin (1978, 1979) a 
method was proposed to simplify the calculations and this gave us the possibility to 
advance the realisation of the bootstrap programme and find the coupling constants and 
anomalous dimensions for various models of conformal field theories and the critical 
indices in the theory of second-order phase transitions. The appearance of scale 
invariance and anomalous dimensions has been proposed for the first time by Patas- 
chinskii and Pokrovskii (1964). 

The paper is organised as follows. In 0 2 we present the description of the method 
using the simplest case of trilinear interaction as an example. In 0 3 the critical indices 
are found in a model of second-order phase transitions. We consider a space of 
dimensions D = 4 - E .  The values of the critical indices found coincide with those of 
Wilson. We also managed to obtain the critical indices directly in three-dimensional 
space. 

The efficiency of the method is demonstrated in 0 4,  where we solve a number of 
complex models of the triple interaction for both Bose and Fermi particles. 

2. Method for calculating anomalous dimensions 

Let us take as an example the simplest scalar field model with 

S i n t  = Aq53/3! (1) 

in D-dimensional spacet. The solution will be given for D = 6 .  
Define the normalisation of the conformally invariant propagator and vertex as 

2 2 
= g ( x f 2 x  ;3x : 1  )-d’2 xi j  = ( X i  - x i )  

G(xix2) = (01 T(4d(Xl)4d(X2))10) = ( l /vh)  ( U d ) l r ( h  - d ) ) ( x A ) - d  

where g is a coupling consant and d is the anomalous dimension of the scalar field 

To calculate the values of g and d we shall take the renormalised equations, written 
r$d(X) ;  h = +D. 

as skeleton equations (bootstrap equations): 

x2 

T The Eudlidian formulation of quantum field theory (Fradkin 1959, Schwinger 1959, Nakano 1959) is used 
throughout the paper. 
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XZ 

A dot on the line entering a vertex shows the amputation of vertices with respect to the 
corresponding leg. For instance, 

x2 

Calculations of the amputated vertices are performed within the method proposed by 
Symanzik (1972) and Ferrara et a1 (1972,1974) and developed by Fradkin and Palchik 
(l974,1975a, b). The equation for the propagator (3) is taken in the form proposed by 
Mack and Symanzik (1972). 

.x2 

O 4 X x ,  
The designation 

stands for the three-point vertex of the energy-momentum tensor 6," and two scalar 
fields 

This vertex satisfies the generalised Ward identity (Fradkin 1955b, Takahashi 1957) 
G,, (x txzx3j  = (olT(6, , (x3)~(Xt)~(X2))10).  

- a * , 3 G , , ( ~ l x 2 ~ 3 )  = [S(x3-x1)aXv1+ S ( X ~ - X & ~  

- ( d / D ) d ~ 3 S ( ~ 3 - ~ ~ ) - ( d / D ) d X v 3 S ( ~ 3 - ~ z ) ] G ( ~ i ~ z ) .  (4) 

The right-hand sides of equations (2) and (3) are infinite sums of graphs which are 
two-particle irreducible in the longitudinal direction. The statement about the con- 
formal invariance of the equations made in the introduction refers not only to the whole 
sum but also to each term on the right-hand sides of these equations. Consequently, 
each term of these sums transforms in the same way as the three-point function; because 
the latter is defined uniquely, each term is proportional to the left-hand side of the 
corresponding equations. The proportionality coefficient is a function of the dimen- 
sions of the fields and the space. For instance, 
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Now we come to the sat of algebraic equations we spoke about: 

1 = g2Vl(d; D)+g4V2(d; D)+.  . . 
1 = g2Pl(d; D ) + g 4 P 2 ( d ;  D )  +. . . . 

Let us solve these equations by perturbation, assuming that we may confine ourselves in 
equations (6 )  to the first term of the series in powers of g 2 .  Hence it follows that at least 
the following inequalities must hold: 

g2V2(d;D)/V1(d;D)<< 1 g2Pz(d;  D)/P1(d;  D)<< 1. (7) 

The simplest way to satisfy both inequalities is to look for solutions of equations (6) for 
which g2 << 1. If we simultaneously confine ourselves, say, to the three-vertex approxi- 
mation we necessarily have Pl(d;  D )  >> 1, V l ( d ;  D )  >> 1 (since in this case g2 Vl  = g2P1 = 
1). This requirement only strengthens the inequalities (7). Consequently, we should 
look for the solution with , g 2 c  1 in the vicinity of the common poles in d of the functions 
V l ( d ;  D )  and P l ( d ;  D) .  The location of these poles may be found as follows. 

Let us first consider the three-vertex term. It is conveiiient to integrate both sides of 
(5) over xl: 

g2V1(d; D)(X;Jd12 

(8) 

In order to find the positions of the poles of this expression, we recall that the function 
(x2) -"  treated as a function of the parameter a has first-order poles at a = iD  + k, 
k = 0, 1 ,2 ,  . . . . It is known (Gelfand and Shilov 1964) that 

2 -(2D-3d)/2 D x ( x 4 5  1 d x 4  dDx5 dDx6.  

where 

= zTh/r(h), 
Also, the expression ( x : ~ ) - ~  ( x ; ~ ) - '  ( x : ~ ) - '  has first-order poles in the variables 
S = a + p  + y  at S = D  +m, m =U, 1 , 2  a (a,  /3, y f 0 ;  +D + I ;  1 = 0 , 1 , 2 . .  .). By using 
the Fourier transform of the given expression one can prove that 

lim E ( x  T2 )-" ( x  ;3 )-' ( x i  1 )--' I =D .-a - P --E 
E'O 

U6ng equations (9) and (10) one can find the locations of all the poles of the integrand in 
(8) and their residues. In the following we shall confine our search to solutions of 
equations (6) near the simplest pole of the function Vl(d; D) ,  namely d = $D. Put 

2 d -- :D i- ? ; E l .  

Now we readily find the first and the second orders in €1 ir; the expansion of the function 
V l ( d ; D )  and the first order in for the function V2(d;D) .  Expansions of the 
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functions Pl(d;  D )  and P2(d; D )  induced by the equation for the energy-momentum- 
tensor-containing vertices (3) are found analogously. The expansion of P l (d ;  D )  may 
also be found by using the exact (valid for all d and D )  expression for PI obtained by 
Fradkin and Palchik (1975b). It is worth mentioning that the expansion of the function 
Pl(d, D )  depends essentially on the dimensionality D of the space. Put D = 6. Then 
the algebraic set acquires the form (for more details see Palchik 1977)t 

1 1 
E 1  

1 =-~g:[l-E1(4$(1)+~)]-g:---  1 2 4  

where 

d 
$(x) =-In r ( x ) .  

dx g: = g 2 ( h J ) 2  

These equations are accurate when << 1. It can easily be seen that in the three-vertex 
approximation (i.e. when confining ourselves only to the leading terms on the right- 
hand side) there are no solutions. However, in the five-vertex approximation there is a 
solution with small cl:  

g: = -1.7 x 10-~  €1 0.07 d = (4 + y, x (12) 

It follows already from the three-vertex approximation that g 2  - E:, and thus the true 
expansion parameter is el, i.e. the deviation of the dimension d from d = 4. For this 
reason we kept the next order in cl in the three-vertex term and only the leading order 
in the five-vertex term. 

3. Critical indices in a model of second-order phase transitions 

Consider now the interaction Lagrangian 

9 i n t  = Ad4. (13) 

This gives the model for phase transitions of second order. Wilson and Fisher succeeded 
in using the E expansion in the (4-~)-dimensional space to find the anomalous 
dimensions of the fields and critical indices in this model. Below an alternative method 
is proposed for obtaining anomalous dimensions in this model which work not only in 
the space of D = 4 - E  dimensions but directly in three-dimensional space. 

Suppose that the theory given by (13) is conformally invariant. To exploit this 
assumption efficiently, it is useful to formulate the interaction (13) in terms of the 
auxiliary field 

x ( x )  - : ( b 2 ( x )  : 

L i n t  = $84 'x. 
The new Lagrangian is of the form: 

t In this paper another normalisation of the vertex and propagator has been chosen, so j l l a ,  B )  arc slightly 
different from the analogous equations in the paper by Palchik (1977). 
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Let d be the dimension of the fundamental field 9 ( x ) = q 5 d ( x ) ,  and A be the 
dimension of the auxiliary field ~ ( x )  = x A ( x ) .  We shall take the renormalised skeleton 
equations for vertices and propagators as a starting point. 

In the present case it is convenient to take them in the form: 

] X  

4 h i 
2 

2 

where 

are Bethe-Salpeter kernels which cannot be divided into two parts in the longitudinal 
channel by cutting two 9 lines. These kernels may be represented as a skeleton 
decomposition. For instance, 
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Assume that the dimensions of the conformal vertices and propagators lie near the 
values iD and &D: 

d=$D-E1 A = $ D - E ~  (16) 
where and € 2  are small, and let us find the solution. These values are special (see 
below) since some skeleton graphs on the right-hand sides of equations (14) have poles 
at e 1 = e 2 = O  as functions of the dimensions d and A.  This leads to the situation 
indicated in the previous section: on one hand it suffices to keep only these graphs since 
they give the leadingacontribution; on the other hand, one may use the methods 
developed in the previous section in order to compute them. This is essentially valid in 
the space of any dimension. Note that at D = 4 - E  the dimensions (16) lie near their 
canonical values d = zD - e 1  = ($D - 1) + $ E  - e 1 .  In the three-dimensional space the 
value of d is d = a- el and is far from its canonical value. The results of Pataschinskii 
and Pokrovskii (1964) correspond to the zero approximation in cl and e2 .  

We present here as an example the result calculating the first two graphs on the 
right-hand side of (14a) for the dimensions (16). Keeping only leading terms with 
respect to E and using equations (9) and (10) we obtain 

1 

2 2 E 1  three-vertex contribution = - g  
2 k 2 -  2 6 1 ) 3 ( 6 2  + 2 E 1 )  

4 2 
five-vertex contribution = - g  

2 ( E 2  - 2 E l ) $ ( E 2  + 2 E 1 ) ’  

Both these terms must be kept since e l ,  e2 and g 2  are parameters of the same order of 
magnitude (this follows from (14~); see Fradkin and Palchik (1978)). Moreover, there 
is also an infinite set of diagrams (analogous to the parquet graphs) which are of the 
order of ( g 2 / E ’ ) h ,  where E ’  - € 1  - € 2 ,  and consequently give the same contribution. All 
these diagrams must be summed. 

The problem of summing them may be solved by a method analogous to the one 
developed by Sudakov (1956), Dyatlov et a1 (1957), Pomeranchuk et a1 (1956) and 
Patashinskii and Pokrovskii (1975) for summing the parquet diagrams. Let us 
represent the Bethe-Salpeter kernel as 

Here F includes the first graph from (15) and the sum of all graphs which can be 
separated by making two vertical full-line cuts and K is the sum of graphs which cannot 
be separated by making two full-line cuts in any direction (K includes, in particular, the 
fourth graph from (15)). Let us substitute (17) into (14a) and keep only those graphs 
which create poles in the point (16). One can easily see that such graphs are contained 
only in the kernel F. Therefore, we have 

(17a) 
I 
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Further, of all graphs contained in F one must keep only the reducible ones (in the 
terminology of the paper by Pomeranchuk et al (1956)): 

p-( =yJ--< 

+ 

+ 
w 

I I 

b -4 
b0-d I I I 

Here we keep only those graphs (the reducible ones) which can be converted into the 
vertex 

by making (i) every pair of vertices joined by a dotted line and (ii) every pair of vertices 
joined by two full lines stick together. For instance: 

I 

The remaining graphs do not give poles in the points (16). It is essential to note that the 
quantity F defined in (17b) is a sum of skeleton graphs and thus differs from the 
analogous quantity in the papers mentioned above, wherein Feynman graphs are 
summed. One may show that F obeys the equation 

To this end it suffices to substitute (17b) into (17c) and to utilise the bootstrap equation 
(17a)  (to deduce the first term on the right-hand side). 

To suit our purposes, however, it is more convenient to use, instead of (17c), the 
equation for the kernel F, taken at coinciding external momenta (its derivation is 
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explained below): 

In deriving equation (18) it is assumed that all the coordinate differences are of the same 
order of magnitude and that the leading contribution in the integral comes from the 
region x5.5 + 0 (or p + 0 in momentum space). This equation is obtained by Pomeran- 
chuk et aZ(1956) for D = 4. One readily sees that in our case this remains valid for any 
space dimension provided el  and are sufficiently small. Indeed, the authors of the 
papers mentioned above essentially used the presence of logarithmic divergences, and 
the derivation of equation (18) was reduced to summing the leading logarithms (which 
are contained in the parquet graphs). In our case, because of the special choice of 
dimension (16), exactly the same situation arises in the ultraviolet region for any space 
dimension. At c1 = e2 = 0 (i.e. at the poles) the usual ultraviolet divergencies are 
reproduced. The leading singularities arise in the skeleton graphs of the parquet type 
while the role of the large logarithm (to be more precise, of A ln(p2/A)) is played by the 
quantity g2/cf, where E' - el - €2 (recall once again that this concerns the skeleton 
graphs (17b), which only in the particular case D = 4 reduce to the usual Feynman 
ones). Thus, the whole argument on the summation of Feynman graphs is readily 
extended, without any changes, to the summing of skeleton graphs with scale-invariant 
dimension (16) and with any space dimension. 

For what follows the most important point is the fact that the quantity 

p3Hp4 

x'Bx3 

F(pl p2p3p4) = 

PI P2 
depends only on a single large momentum, if the conditions p1, p 2 - p ,  p >>p3, p4 are 
fulfilled. In this case F = F ( p )  - ( p 2 ) h - 2 d .  In the configuration space the condition 
p >> p3p4 means that xi3 + 0. The corresponding expression for F is 

F ( X I X 2 X 3 X 4 )  = 

x2 x4 

where xi3 + 0 or ~ 2 4  + 0. If, on the contrary, all the coordinate differences are of the 
same order (correspondingly pl-p2-p3-p4), i.e. €12 lnx:2 << 1, we must replace 
(X:3)-D+2d by the limiting expression .rhf/(2~J(h)) S(x13) (see (9)). Then in place of 
(1 9) we have 
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Let us now substitute (19a) into the left- and (19) on the right-hand side of (18). After 
the calculation of the integrals on the right-hand side we must go to the limiting 
expression like (19a) by using equation (9). This results in the following expression for 
the ‘coupling constant’: 

r 2 ( d )  1 9 1 .-- 
f = f 2  r2 (h  - d )  r 2 ( h )  8 ($D - d)” 

After the substitution of (19) and (20) into (17a) and (14b) we obtain the algebraic 
equations for the dimensions: 

- r2 (h  - d ) r ( d + $ A - h ) r ( d - $ A )  
r 2 ( d ) r ( D  - d  -$A)r(h - d  +$A)  

l = f  

- d r ( h - d j r ( d - h )  1 = -f- 
D - d r ( d ) r ( D  - d )  

These equations are valid in the main order in €1 and €2 for any space dimension if el and 
e2 are sufficiently small. When D = 4 - E  the substitution of d = 1 -$e + Coe2 and 
A = h - Cle into (21) leads to the known solution (Wilson and Kogut 1947): 

If D = 3 the approximate solution of the set of equations (21) has the form 

d ~ $ + 0 * 0 1  A -9-  0.17. (22) 

A knowledge of the dimensions of the fields q5 and x makes it easy to find the critical 
indices 7 and Y, The index 7 characterises the deviation of the behaviour of the 
two-point Green function G(xlxz) from that of the free one. The index v is associated 
with the singular behaviour of the correlation radius distance near the phase-transition 
point: 

The remaining critical indices may be found from the scaling relations that connect 
these indices with the known 7 and I/. The method described here can be applied to a 
rather wide class of models in any space-time dimensions. It is important that in this 
case scale dimensions of fields can turn out to be far from their canonical values. From 
this point of view the model of four-fermion interaction is of special interest and it will 
be considered elsewhere. 

Note that for a sufficiently wide class of theories and with any dimensionality of the 
space one may always find such field dimensions (perhaps far from their canonical 
values) that all the parquet skeleton graphs turn out to be of the same order. It would be 
of interest to apply the method developed to four-fermion interaction in four-dimen- 
sional space. We hope to do this elsewhere. 
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4. Anomalous dimensions in models of triple interactions 

Consider more models and find anomalous field dimensions by applying the method 
described in 0 2. 

4.1. Model 1 

Here 4i is an N-component scalar field with the dimension d4 and x is a one- 
component scalar field with the dimension d,. 

We will search for a conformally invariant solution of this model in the space of 
D = 6 + E  dimensions near the canonical values of the field dimensions. Assume that 
the deviation from the canonical values is of order E :  

(24) 

(25) 

d -1 1 
4 - 2D - 1 + C+& + * . * = 2 - T E  + C+E +. . . 

d , = $ D - l + C x e + .  . . = ~ - & + C , E + .  . . . 
The bootstrap equation for the vertex G(x1x2x3) = (4 ( x l ) ~ ( x 2 ) x ( x 3 ) )  coincides in form 
with the one considered in the previous section (see equation (14a)). Now, however, we 
must separate in the Bethe-Salpeter kernel another set of graphs which gives a 
contribution of the same order when the expansion in powers of E is considered. 

One may readily make sure that the diagrams 

and 

are, near the dimensions (24), to first order in E proportional to g ( g z / e )  and g ( g 4 / e 2 ) .  
As for the equation for the propagator of the x field, it shows that g 2  - E and therefore 
the above diagrams are of equal order of magnitude. Note that the diagram 

\ / \ 

is of order g ( g 4 / e )  and, consequently, is of first order in E .  

One may easily see that to higher orders of g 2  diagrams appear which are of the same 
order in E as the three-vertex contribution. All these diagrams may be summed in the 
same way as was done in 0 3. In the present case the summation is considerably easier. 
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It is sufficient to introduce into the consideration the vertex of three ,y fields whose 
equation is 

I A 
I 

/ \ 
'\ 

I 

Then the equation for the vertex 

I 

A 
transforms to the form 

I 

\ 

Q, 
// '\ 

// 
+ /  \ 

I 

+ 2 + . . . .  
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Now in all the equations the five-vertex graphs are already of the next order in E as 
compared with the three-vertex ones. 

Equations for the propagators of the fields 4 and x should be also written using the 
newly introduced vertex of the three fields x: 

/ \  b 
/ ‘  

= z 4 K  

I 
/ \ 

K = 1  N J f +  

\ 

+ 
\ 
\ 

6” 
// \ \  + . . . .  

/ 
/ 

/ 

// 6” \\ 

/ \ 

The set of equations (26)-(29) obtained determines the four unknown C,, C,, g and A,  
the latter being the coupling constant of the vertex of the three scalar fields x. 

The method of 0 2 makes it easy to write the corresponding algebraic equations. 
Within the three-vertex approximation they are. 

1 1 
l=-(Ng:+A:)-+ ... . 

E 6CX 

1 2 1  1 =-g1-+. . . 
E 3c4 

where 

g: = (3n,13r3(3)g2 A: = ( 4 n ~ ) ~ r ~ ( 3 ) A  ’. 
The investigation of this set of equations shows that for E > 0 there are solutions 

obeying the conditions A > 0, g2 > 0, d, > 4D - 1, d, > $D - 1 only when N = 1. If 
N = 1 the following two solutions exist: 

(31a) 

(31b) 

2 2 1  c -c  -1 gi=Ai=gE 4 -  x - 1 8  

2 75 2 108 c -25 g1=499g h i = ~ i ~  4 - 499 
66 1 c, =m. 
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The solution (31a)  corresponds to the degenerate case when the fields 4 and x are 
indistinguishable and the interaction is, as a matter of fact, reduced to g 4 ~ ~ / 3 ! .  In this 
degenerate case the result coincides with that of Mack (1972). 

4.2. Model2 

The technique of calculation developed in § 2 may be applied almost unaltered to the 
Yukawa model. We assume that (I/ is an N-component spinor field whose dimension is 
d and 4 is a scalar field with the dimension A. We study this model in the space of 
dimensionality D = 4 - E .  We search for solutions for the field dimensions near their 
normal (canonical) values: 

d = $ ( D - l ) + C i r + .  . . A = & - ~ + C ~ E + .  . . I (33) 
We confine ourselves to leading order in E .  The set of bootstrap equations for this 
interaction is readily written as 

I 

I 

fi n. ,"\ \ /  

P - I  
(*) = -  &- 

P 
c -x- \ &-+pJJ (34c) 

/ \ 

where 
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The quantity G(xlxz;  x 3 )  = (T($ i (~ l ) ( i ; i (~Z)~(~3)) )  and the spinor propagator G(xlxZ) = 
( T($i(x1)(i;i(x2))) (no summation over repeated indices is assumed) are chosen 

2 - ( A + l ) / 2 ~  2 - (A+1)/2 -(2d-A)/2 G ( x i x z ;  ~ 3 )  = g x * i 3 ( ~ 3 i )  x 3 2 ( x 3 2 )  b : 2 )  

G(xlxz)  = -i.rr-hI'(d + i ) / r ( h  - d +3)212(~:2 ) - (2d+1) /2  
where 2 = x,y&. For calculations we shall need a formula analogous to (10): 

2 1 3  lim E 

The exact expressions used to calculate the three-vertex contributions on the right- 
hand sides of equations (346) and (34a) are given in the appendix. All the integrations 
are performed in full analogy with 0 2. One readily establishes that the five-vertex 
terms contribute as E' to the values of the anomalous dimensions. They will therefore 
be neglected. The resulting algebraic set of equations 

1 = g2/(2C14 1 =2Ng2/(C2~)  (36) 2g2 
E (3 - 2 c1- CZ) 

1 =  

's solved to give 

E D N E A=--1+- D-1 
2N+3'  g2 = 2(2N + 3)' 

d=- + 
2 4(2N+3)  2 (37) 

This result coincides with those of Ferrara and Giafaloni (1975), Geicke and Meyer 
(1973) and Hu (1974, 1975). 

The same model (32) may be considered directly in three-dimensional space. 
Let us look for solutions of the bootstrap equations (34) near the dimensions of the 

d =i(n - 1) + E O  A = D - 2d - 2 ~ 1  k l I , E O < <  1. (38) 

Note that the dimensions of the fields intrinsic to the solutions found in D = 4 - E  space 
are also connected by condition (38): 

fields (Zaikin 1978): 

1 = $(D -2d -A) =a ( l -  C1 - T C ~ ) E  + 0 if E + 0. 

The algebraic set of equations in the three-dimensional space is 

1 = g: /e  1 = gi/3Eo 1 = &rNg:. (39) 2 

The field dimensions and the expansion parameters are found from these to be 

32 2 4 1  
A=1-- g1=,- 

4 d = l + -  
97r2N 9 r 2 N  371- N 

4 
€ 0  = - 

3r2N ~ I T ~ "  

4 
€1 =- 

and 
Within the model considered we are able to compare the results of calculations 

performed in three-dimensional space with those for D = 4 - E  dimensions with E put 

appear to be sufficiently small even at N = 1. 
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equal to unity: 

1 -- 4 - A3 = --(I- N 7). 32 
2 N + 3  2 9 1 r N  d4-<-d - - 4(2N + 3) 9 r 2 N  

When N = 1 these differences are given by 

d4-E-d3 0.005 A4-€-A3=0*06. (41) 

The analytical continuation with respect to E in the limit N + m  gives correctly the 
functional dependence on N, but not the coefficient in front of 1/N in the expressions 
for the field dimensions. The asymptotic behaviour of the dimensions d and A in the 
spaces D = 4--E and D = 3 at N + m are 

4 1  
d 3 = l + - -  

91r’N 

4.3. Model3 

The problem of finding anomalous field dimensions for the Yukawa-type model directly 
in four-dimensional space is of great importance for conformal quantum field theory. 
Consider the theory with the interaction Lagrangian 

T i n t =  i g~ , (x )y5h~~ , (x )CPa(x )  (43) 

where the A P, are generators of the SU(N) group. 
For this interaction there are no solutions near the normal values of the dimensions 

of the fields r// and 4 (Galanin 1975). Therefore, the dimension of at least one of the 
fields should be far from its canonical value (Zaikin 1978, 1979). 

Set 

d = f ( D  - 1) + € 0  A= 2d + €1. 

One sees from (44) that the dimension of the scalar field A deviates considerably from its 
canonical value (Acanonical = fD - 1). The bootstrap equations for the interaction (43) 
coincide with equations (34). The form of the propagators and the vertex function is 
trivially generalised for the case of the SU(N) group. 

The set of algebraic equations may be obtained easily by the method developed as 

(44) 

In deriving this set of equations, the known relations for the SU(N) generators were 
used: 

2 
N 

$A E j  = - ( N 2  - 1)Sij. 

It is easy to observe that the set obtained is one of linear homogeneous equations. A 
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solution is possible only for N subject to the equation 

N 2 - 2 N  - 3  = 0. 

The physically interesting solution is that with N = 3 .  With N = 3 we get the following 
values for the expansion parameters: 

2 2  8 2  2 4 2  
€1 = -3g1 E o  = Jgl g1=.rr go. 

The field dimensions are 

d=?+Fgl A = 3 +4g:. 8 2  

The validity of the calculations requires that 

o<g:<< 1. 

An interesting feature of the solution found in the three-vertex approximation 
under consideration is the fact that one of the parameters g: remains free. It must be 
determined after higher orders in eo and are taken into account. The next-order 
calculations are, however, made more complicated by the necessity to sum simul- 
taneously to leading order in €1, an infinite number of diagrams which correspond to 
vertices with four boson fields. This, however, falls beyond the scope of the present 
work. 

Appendix 

Calculations of the three-vertex graphs in equations (34b) and (34c) are performed in 
the same way as in the case of scalar fields (Zaikin 1978). We list here only the final 
forms for the expressions: 

r2[@ - A )  +$]r[ i (D + A - 2 d ) ] r [ i ( 2 D  - 2d - A)]  
r 2 ( $ A + $ ) r ( d  -$A)r[$(d  + A - D ) ]  

X 

x { $ ( d  -$A) + +[i(D + A -  2 d ) ] +  +(D - d  -$A) + $[$(2d + A - D ) ]  

- 2 $ [ i ( D  - A ) + $ ] - ~ $ ( $ A + ~ ) } ( X ~ Z ) ~ G ~ ( X ~ Z )  
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r2[$(D - A )  + $]r[$(D + A - 2 d ) ] r ( D  - d -$A)r (A  - h ) r ( h  - A )  
X 

r 2 ( $ A + & ) r ( d  - iA) r [$ (2d  + A - D ) ] r ( D  - A ) r ( A )  

~ { + [ $ ( 2 d  + A - D ) ] + c C , ( D - d  -$A)-cC,(d - $ A ) - + [ $ ( D  + A - 2 d ) ] } .  
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